organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

t-3,*t*-5-Dimethyl-*r*-2,*c*-6-diphenyl-piperidin-4-one

S. Balamurugan,^a A. Thiruvalluvar,^a* A. Manimekalai^b and J. Jayabharathi^b

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India Correspondence e-mail: athiru@vsnl.net

Received 7 July 2007; accepted 12 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.127; data-to-parameter ratio = 18.6.

In the title molecule, $C_{19}H_{21}NO$, the piperidine ring adopts a chair conformation. Two phenyl rings and two methyl groups, attached to the piperidine ring at positions 2, 6, 3 and 5, respectively, occupy equatorial positions. The dihedral angle between the two phenyl rings is 57.1 (1)°. Molecules are linked by N-H···O hydrogen bonds.

Related literature

For related literature, see: Noller & Baliah (1948); Hasan *et al.* (1985); Balamurugan *et al.* (2006, 2007); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007).

Experimental

Crystal data $C_{19}H_{21}NO$ $M_r = 279.37$ Triclinic, $P\overline{1}$

a = 7.1392 (3) Å

b = 10.5811 (5) Å
c = 11.6276 (5) Å
$\alpha = 102.320 \ (2)^{\circ}$
$\beta = 107.613 \ (2)^{\circ}$

 $\gamma = 101.735 \ (2)^{\circ}$ $V = 783.31 \ (6) \ \text{Å}^{3}$ Z = 2Mo K α radiation

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.854, T_{max} = 0.987$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.127 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 3606 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.18 \text{ e } \text{ Å}^{-3} \\ 194 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.15 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O4^i$	0.90 (2)	2.43 (2)	3.3109 (17)	170.2 (15)
Symmetry code: (i)	x = 1 + 7			

 $\mu = 0.07 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.022$

 $0.30 \times 0.22 \times 0.18 \text{ mm}$

17560 measured reflections

3606 independent reflections

2507 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT-NT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2193).

References

- Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2006). Acta Cryst. E62, o2005–o2006.
- Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2007). Acta Cryst. E63, o789-o791.
- Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hasan, M. V., Arab, M., Pandiarajan, K., Sekar, R. & Marko, D. (1985). Magn.
- Reson. Chem. 23, 292–295.
- Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.
- Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.

supplementary materials

Acta Cryst. (2007). E63, o3504 [doi:10.1107/S1600536807034010]

t-3,t-5-Dimethyl-r-2,c-6-diphenylpiperidin-4-one

S. Balamurugan, A. Thiruvalluvar, A. Manimekalai and J. Jayabharathi

Comment

The conformation of the title compound was established by NMR spectroscopy by Hasan *et al.* (1985). Crystal structures of di-2-furylpiperidin-4-one derivatives have been reported, wherein the piperidine ring adopts a chair (Balamurugan *et al.*, 2006), a twist-boat (Balamurugan *et al.*, 2007) and a chair conformation (Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai, 2007). Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007) have reported the crystal structure of diphenylpiperidin-4-ol derivative, wherein the piperidine ring adopts a chair conformation.

In the title molecule, $C_{19}H_{21}NO$, the piperidine ring adopts a chair conformation (Fig. 1). Two phenyl rings and two methyl groups attached to the piperidine ring at the positions 2, 6, 3 and 5, respectively, have equatorial orientations. The dihedral angle between the two phenyl rings is 57.1 (1)°. Molecules are linked by an N1—H1…O4 (-1 + *x*, *y*, *z*) hydrogen bond (Fig. 2).

Experimental

The title compound was prepared by the known procedure (Noller & Baliah, 1948) and characterized using NMR techniques (Hasan *et al.*, 1985).

Refinement

Atom H1 at N1 was located in a difference Fourier map and refined isotropically. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The molecular packing of the title compound, viewed down the b axis, showing the hydrogen bonds (dashed lines).

t-3,t-5-Dimethyl-r-2,c-6-diphenylpiperidin-4-one

<i>Z</i> = 2
$F_{000} = 300$
$D_{\rm x} = 1.184 {\rm ~Mg~m}^{-3}$
Melting point: 405(1) K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 10924 reflections
$\theta = 1.9 - 27.8^{\circ}$
$\mu = 0.07 \text{ mm}^{-1}$
T = 298 (2) K
Block, yellow
$0.30\times0.22\times0.18~mm$

Data collection

Bruker SMART APEXII diffractometer	3606 independent reflections
Radiation source: fine-focus sealed tube	2507 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 298(2) K	$\theta_{\text{max}} = 27.8^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -9 \rightarrow 9$
$T_{\min} = 0.854, \ T_{\max} = 0.987$	$k = -13 \rightarrow 13$
17560 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0551P)^2 + 0.1535P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3606 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Prim methods

sup-2

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	Uiso*/Ueq
N1	0.43830 (15)	0.75505 (11)	0.24410 (10)	0.0382 (3)
H1	0.331 (3)	0.7840 (16)	0.2495 (14)	0.058 (4)*
C2	0.49854 (18)	0.79381 (13)	0.14409 (12)	0.0377 (3)
H2	0.5555	0.8923	0.1702	0.045*
C3	0.6675 (2)	0.72851 (15)	0.12688 (13)	0.0452 (3)
Н3	0.6095	0.6303	0.1032	0.054*
C4	0.8407 (2)	0.77112 (15)	0.25275 (14)	0.0478 (3)
O4	1.01600 (16)	0.82417 (15)	0.26561 (12)	0.0783 (4)
C5	0.78155 (19)	0.74549 (15)	0.36128 (13)	0.0469 (3)
Н5	0.7275	0.6475	0.3422	0.056*
C6	0.60440 (18)	0.80756 (13)	0.36724 (12)	0.0390 (3)
Н6	0.6554	0.9058	0.3869	0.047*
C21	0.31407 (18)	0.75191 (13)	0.02317 (12)	0.0385 (3)
C22	0.2010 (2)	0.61779 (15)	-0.03430 (14)	0.0500 (3)
H22	0.2367	0.5525	0.0031	0.060*
C23	0.0361 (2)	0.57985 (17)	-0.14633 (14)	0.0590 (4)
H23	-0.0375	0.4892	-0.1845	0.071*
C24	-0.0200 (2)	0.67568 (18)	-0.20191 (14)	0.0589 (4)
H24	-0.1312	0.6500	-0.2775	0.071*
C25	0.0882 (2)	0.80852 (17)	-0.14564 (14)	0.0564 (4)
H25	0.0501	0.8736	-0.1826	0.068*
C26	0.2547 (2)	0.84655 (15)	-0.03351 (13)	0.0464 (3)
H26	0.3276	0.9373	0.0042	0.056*
C31	0.7402 (3)	0.7603 (2)	0.02373 (16)	0.0680 (5)
H31A	0.6255	0.7314	-0.0546	0.102*
H31B	0.8396	0.7138	0.0148	0.102*
H31C	0.8016	0.8559	0.0456	0.102*
C51	0.9625 (2)	0.7943 (2)	0.48516 (16)	0.0728 (5)
H51A	0.9169	0.7753	0.5510	0.109*
H51B	1.0219	0.8899	0.5054	0.109*
H51C	1.0634	0.7487	0.4776	0.109*
C61	0.53009 (19)	0.77581 (14)	0.46923 (12)	0.0425 (3)
C62	0.5871 (2)	0.87132 (18)	0.58451 (14)	0.0602 (4)
H62	0.6657	0.9587	0.5985	0.072*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C63	0.5270 (3)	0.8370 (2)	0.67992 (15)	0.0767 (6)
H63	0.5681	0.9014	0.7578	0.092*
C64	0.4088 (3)	0.7101 (3)	0.66034 (17)	0.0745 (6)
H64	0.3681	0.6882	0.7241	0.089*
C65	0.3509 (3)	0.6158 (2)	0.54676 (17)	0.0659 (5)
H65	0.2700	0.5292	0.5330	0.079*
C66	0.4113 (2)	0.64769 (16)	0.45176 (14)	0.0511 (4)
H66	0.3713	0.5819	0.3749	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0375 (5)	0.1211 (11)	0.0795 (9)	0.0161 (6)	0.0247 (5)	0.0370 (8)
N1	0.0302 (5)	0.0506 (7)	0.0349 (6)	0.0144 (5)	0.0118 (4)	0.0120 (5)
C2	0.0337 (6)	0.0413 (7)	0.0395 (7)	0.0125 (5)	0.0138 (5)	0.0123 (5)
C3	0.0411 (7)	0.0547 (8)	0.0489 (8)	0.0204 (6)	0.0228 (6)	0.0173 (7)
C4	0.0362 (6)	0.0569 (8)	0.0603 (9)	0.0223 (6)	0.0215 (6)	0.0226 (7)
C5	0.0372 (7)	0.0601 (9)	0.0509 (8)	0.0228 (6)	0.0156 (6)	0.0232 (7)
C6	0.0324 (6)	0.0427 (7)	0.0390 (7)	0.0129 (5)	0.0089 (5)	0.0102 (6)
C21	0.0359 (6)	0.0476 (8)	0.0349 (7)	0.0128 (5)	0.0163 (5)	0.0124 (6)
C22	0.0496 (8)	0.0481 (8)	0.0492 (8)	0.0123 (6)	0.0152 (6)	0.0134 (7)
C23	0.0536 (8)	0.0592 (9)	0.0485 (9)	0.0039 (7)	0.0130 (7)	0.0040 (7)
C24	0.0473 (8)	0.0830 (12)	0.0363 (8)	0.0090 (8)	0.0094 (6)	0.0150 (8)
C25	0.0546 (8)	0.0723 (11)	0.0461 (8)	0.0194 (8)	0.0144 (7)	0.0290 (8)
C26	0.0451 (7)	0.0510 (8)	0.0436 (8)	0.0123 (6)	0.0153 (6)	0.0176 (6)
C31	0.0589 (9)	0.1070 (14)	0.0626 (10)	0.0384 (9)	0.0378 (8)	0.0371 (10)
C51	0.0436 (8)	0.1164 (15)	0.0646 (11)	0.0352 (9)	0.0114 (7)	0.0395 (10)
C61	0.0376 (6)	0.0565 (9)	0.0338 (7)	0.0231 (6)	0.0090 (5)	0.0108 (6)
C62	0.0613 (9)	0.0684 (10)	0.0442 (9)	0.0308 (8)	0.0101 (7)	0.0045 (8)
C63	0.0870 (13)	0.1156 (17)	0.0349 (9)	0.0604 (13)	0.0194 (8)	0.0113 (10)
C64	0.0760 (12)	0.1259 (18)	0.0549 (11)	0.0593 (12)	0.0361 (9)	0.0466 (12)
C65	0.0635 (10)	0.0901 (13)	0.0654 (11)	0.0327 (9)	0.0328 (8)	0.0417 (10)
C66	0.0486 (8)	0.0627 (9)	0.0454 (8)	0.0186 (7)	0.0189 (6)	0.0175 (7)

Geometric parameters (Å, °)

1.212 (2)	C64—C65	1.360 (3)
1.4628 (17)	C65—C66	1.381 (3)
1.4595 (17)	С2—Н2	0.9800
0.90 (2)	С3—Н3	0.9800
1.549 (2)	С5—Н5	0.9800
1.5112 (18)	С6—Н6	0.9800
1.516 (2)	С22—Н22	0.9300
1.507 (2)	С23—Н23	0.9300
1.505 (2)	C24—H24	0.9300
1.515 (2)	С25—Н25	0.9300
1.552 (2)	C26—H26	0.9300
1.5096 (19)	C31—H31A	0.9600
1.384 (2)	C31—H31B	0.9600
	1.212 (2) 1.4628 (17) 1.4595 (17) 0.90 (2) 1.549 (2) 1.5112 (18) 1.516 (2) 1.507 (2) 1.505 (2) 1.515 (2) 1.552 (2) 1.5096 (19) 1.384 (2)	1.212 (2)C64—C65 $1.4628 (17)$ C65—C66 $1.4595 (17)$ C2—H2 $0.90 (2)$ C3—H3 $1.549 (2)$ C5—H5 $1.5112 (18)$ C6—H6 $1.516 (2)$ C22—H22 $1.507 (2)$ C23—H23 $1.505 (2)$ C24—H24 $1.515 (2)$ C25—H25 $1.552 (2)$ C26—H26 $1.5096 (19)$ C31—H31A $1.384 (2)$ C31—H31B

C21—C26	1.379 (2)	С31—Н31С	0.9600
C22—C23	1.379 (2)	C51—H51A	0.9600
C23—C24	1.376 (3)	C51—H51B	0.9600
C24—C25	1.364 (3)	C51—H51C	0.9600
C25—C26	1.385 (2)	С62—Н62	0.9300
C61—C66	1.382 (2)	С63—Н63	0.9300
C61—C62	1.381 (2)	С64—Н64	0.9300
C62—C63	1.394 (3)	C65—H65	0.9300
C63—C64	1.364 (4)	С66—Н66	0.9300
O4…H11	2.43 (2)	H5…H65 ¹	2.6000
O4···H31B	2.6800	Н6…Н2	2.3600
O4…H31C	2.6800	Н6…Н62	2.3800
O4…H51B	2.7100	H6···H51B ⁱⁱ	2.5700
O4…H51C	2.7000	H22…N1	2.8700
O4…H62 ¹¹	2.6600	H22···C3	2.9700
N1…H22	2.8700	Н22…Н3	2.4400
N1…H66	2.6800	H23…H66 ^v	2.5500
C24···C31 ⁱⁱⁱ	3.599 (3)	H24…H66 ^v	2.4800
C31···C24 ⁱ	3.599 (3)	H26…H2	2.3300
C51…C62	3.398 (3)	H26···H26 ^{vii}	2.5900
C62···C51	3.398 (3)	H31A…C21	2.6700
C65···C66 ^{iv}	3.547 (3)	H31A…H64 ^{viii}	2.5500
C66…C65 ^{iv}	3.547 (3)	H31B…O4	2.6800
C3…H22	2.9700	H31B····C23 ⁱ	2.9600
C21…H31A	2.6700	H31B····C24 ⁱ	2.9600
С22…Н3	2.8300	H31C…O4	2.6800
C23···H31B ⁱⁱⁱ	2.9600	H51A…C61	2.6400
C24…H66 ^v	3.1000	H51A…C62	2.8400
C24···H31B ⁱⁱⁱ	2.9600	H51B…O4	2.7100
C61…H51A	2.6400	H51B…H6 ⁱⁱ	2.5700
C62…H51A	2.8400	H51B···H51B ⁱⁱ	2.4400
C64···H51C ⁱⁱⁱ	2.8900	H51C…O4	2.7000
C65···H51C ⁱⁱⁱ	2.7400	H51C···C64 ⁱ	2.8900
С66…Н5	2.9100	H51C···C65 ⁱ	2.7400
C66···H51C ⁱⁱⁱ	2.9700	H51C···C66 ⁱ	2.9700
С66…Н1	2.985 (16)	Н62…Н6	2.3800
H1…O4 ⁱⁱⁱ	2.43 (2)	H62····O4 ⁱⁱ	2.6600
H1…C66	2.985 (16)	H63····H2 ^{vi}	2.5900
Н2…Н6	2.3600	H64···H31A ^{ix}	2.5500
H2…H26	2.3300	H65···H5 ^{iv}	2.6000
H2…H63 ^{vi}	2.5900	H66…N1	2.6800
Н3…С22	2.8300	H66…C24 ^v	3.1000
Н3…Н22	2.4400	H66…H23 ^v	2.5500

supplementary materials

Н5…С66	2.9100	H66…H24 ^v	2.4800
C2—N1—C6	112.91 (11)	С31—С3—Н3	108.00
C2—N1—H1	110.0 (10)	C4—C5—H5	107.00
C6—N1—H1	109.1 (10)	С6—С5—Н5	107.00
C3—C2—C21	111.82 (11)	С51—С5—Н5	107.00
N1—C2—C21	110.33 (11)	N1—C6—H6	109.00
N1—C2—C3	108.65 (11)	С5—С6—Н6	109.00
C2—C3—C31	113.35 (14)	C61—C6—H6	109.00
C4—C3—C31	112.24 (14)	C21—C22—H22	120.00
C2 - C3 - C4	108 12 (12)	C23—C22—H22	120.00
C_{3} C_{4} C_{5}	115.81 (13)	C^{22} C^{23} H^{23}	120.00
04-C4-C3	121 85 (14)	$C_{22} = C_{23} = H_{23}$	120.00
04-04-05	121.03(11) 122.34(14)	$C_{23} - C_{24} - H_{24}$	120.00
$C_{1}^{(-)} = C_{1}^{(-)} = C_{1}^{(-)}$	113.06(12)	$C_{25} = C_{24} = H_{24}$	120.00
C_{4} C_{5} C_{5} C_{6}	108.70(12)	$C_{23} = C_{24} = H_{24}$	120.00
$C_{4} = C_{5} = C_{0}$	100.70(12) 112.75(12)	$C_{24} = C_{25} = H_{25}$	120.00
N1 C6 C5	112.73(13) 102.00(11)	$C_{20} = C_{23} = H_{23}$	120.00
NI = CO = CS	108.99 (11)	$C_{21} - C_{20} - H_{20}$	119.00
NI = C0 = C0I	111.00 (11)	$C_{25} - C_{20} - H_{20}$	119.00
$C_{2} = C_{0} = C_{0}$	110.51 (11)	$C_3 = C_3 = H_3 I_A$	109.00
	121.10 (13)	C3—C31—H31B	109.00
$C_{22} = C_{21} = C_{26}$	118.14 (13)	C3—C31—H31C	109.00
C2—C21—C26	120.76 (13)	H31A—C31—H31B	109.00
C21—C22—C23	120.80 (15)	H31A—C31—H31C	109.00
C22—C23—C24	120.21 (16)	H31B—C31—H31C	109.00
C23—C24—C25	119.72 (14)	C5—C51—H51A	109.00
C24—C25—C26	120.07 (16)	C5—C51—H51B	109.00
C21—C26—C25	121.05 (15)	C5—C51—H51C	109.00
C6—C61—C62	121.21 (14)	H51A—C51—H51B	109.00
C62—C61—C66	118.15 (14)	H51A—C51—H51C	109.00
C6—C61—C66	120.56 (12)	H51B-C51-H51C	109.00
C61—C62—C63	120.10 (17)	С61—С62—Н62	120.00
C62—C63—C64	120.74 (16)	С63—С62—Н62	120.00
C63—C64—C65	119.5 (2)	С62—С63—Н63	120.00
C64—C65—C66	120.5 (2)	С64—С63—Н63	120.00
C61—C66—C65	121.02 (15)	С63—С64—Н64	120.00
N1—C2—H2	109.00	С65—С64—Н64	120.00
С3—С2—Н2	109.00	С64—С65—Н65	120.00
C21—C2—H2	109.00	С66—С65—Н65	120.00
С2—С3—Н3	108.00	С61—С66—Н66	120.00
С4—С3—Н3	108.00	С65—С66—Н66	119.00
C6—N1—C2—C3	64.29 (14)	C51—C5—C6—N1	179.84 (13)
C6—N1—C2—C21	-172.79 (11)	C51—C5—C6—C61	-57.92 (17)
C2—N1—C6—C5	-63.18 (14)	N1-C6-C61-C62	-136.85 (15)
C2—N1—C6—C61	174.88 (11)	N1—C6—C61—C66	46.50 (18)
N1—C2—C3—C4	-55.70 (15)	C5—C6—C61—C62	102.10 (17)
N1—C2—C3—C31	179.19 (13)	C5—C6—C61—C66	-74.55 (17)
C21—C2—C3—C4	-177.71 (12)	C2—C21—C22—C23	-178.30 (13)
C21—C2—C3—C31	57.18 (17)	C26—C21—C22—C23	1.2 (2)

N1—C2—C21—C22	-59.92 (17)	C2-C21-C26-C25	178.73 (13)
N1-C2-C21-C26	120.57 (14)	C22—C21—C26—C25	-0.8 (2)
C3—C2—C21—C22	61.12 (17)	C21—C22—C23—C24	-0.8 (2)
C3—C2—C21—C26	-118.38 (15)	C22—C23—C24—C25	0.0 (2)
C2—C3—C4—O4	-125.93 (17)	C23—C24—C25—C26	0.5 (2)
C2—C3—C4—C5	53.21 (17)	C24—C25—C26—C21	0.0 (2)
C31—C3—C4—O4	-0.2 (2)	C6—C61—C62—C63	-175.98 (17)
C31—C3—C4—C5	178.97 (14)	C66—C61—C62—C63	0.8 (3)
O4—C4—C5—C6	126.84 (17)	C6—C61—C66—C65	176.81 (16)
O4—C4—C5—C51	0.7 (2)	C62—C61—C66—C65	0.1 (3)
C3—C4—C5—C6	-52.29 (17)	C61—C62—C63—C64	-1.1 (3)
C3—C4—C5—C51	-178.47 (14)	C62—C63—C64—C65	0.7 (3)
C4—C5—C6—N1	53.83 (15)	C63—C64—C65—C66	0.2 (3)
C4—C5—C6—C61	176.07 (12)	C64—C65—C66—C61	-0.5 (3)
\mathbf{C}_{i}		(i_{1}) (i_{2}) (i_{1}) (i_{2}) $(i_{$	()

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*, -*y*+1, -*z*; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) -*x*+1, -*y*+2, -*z*; (viii) *x*, *y*, *z*-1; (ix) *x*, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O4 ⁱⁱⁱ	0.90 (2)	2.43 (2)	3.3109 (17)	170.2 (15)
Symmetry codes: (iii) $x-1, y, z$.				

